Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - x - 2){\frac{1}{e}}^{x}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x} - \frac{2{\frac{1}{e}}^{x}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x} - \frac{2{\frac{1}{e}}^{x}}{x}\right)}{dx}\\=&{\frac{1}{e}}^{x} + x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - ({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - \frac{2*-{\frac{1}{e}}^{x}}{x^{2}} - \frac{2({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))}{x}\\=&2{\frac{1}{e}}^{x} - x{\frac{1}{e}}^{x} + \frac{2{\frac{1}{e}}^{x}}{x^{2}} + \frac{2{\frac{1}{e}}^{x}}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return