There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {{x}^{x}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{x}^{x}}^{x}\right)}{dx}\\=&({{x}^{x}}^{x}((1)ln({x}^{x}) + \frac{(x)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})}))\\=&{{x}^{x}}^{x}ln({x}^{x}) + x{{x}^{x}}^{x}ln(x) + x{{x}^{x}}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {{x}^{x}}^{x}ln({x}^{x}) + x{{x}^{x}}^{x}ln(x) + x{{x}^{x}}^{x}\right)}{dx}\\=&({{x}^{x}}^{x}((1)ln({x}^{x}) + \frac{(x)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})}))ln({x}^{x}) + \frac{{{x}^{x}}^{x}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{({x}^{x})} + {{x}^{x}}^{x}ln(x) + x({{x}^{x}}^{x}((1)ln({x}^{x}) + \frac{(x)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})}))ln(x) + \frac{x{{x}^{x}}^{x}}{(x)} + {{x}^{x}}^{x} + x({{x}^{x}}^{x}((1)ln({x}^{x}) + \frac{(x)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})}))\\=&{{x}^{x}}^{x}ln^{2}({x}^{x}) + x{{x}^{x}}^{x}ln(x)ln({x}^{x}) + x{{x}^{x}}^{x}ln({x}^{x})ln(x) + 2{{x}^{x}}^{x}ln(x) + 3{{x}^{x}}^{x} + 2x{{x}^{x}}^{x}ln({x}^{x}) + x^{2}{{x}^{x}}^{x}ln^{2}(x) + 2x^{2}{{x}^{x}}^{x}ln(x) + x^{2}{{x}^{x}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !