Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{{{e}^{x}}^{x}}^{x}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{{{e}^{x}}^{x}}^{x}}^{x}\right)}{dx}\\=&({{{{e}^{x}}^{x}}^{x}}^{x}((1)ln({{{e}^{x}}^{x}}^{x}) + \frac{(x)(({{{e}^{x}}^{x}}^{x}((1)ln({{e}^{x}}^{x}) + \frac{(x)(({{e}^{x}}^{x}((1)ln({e}^{x}) + \frac{(x)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))}{({{e}^{x}}^{x})})))}{({{{e}^{x}}^{x}}^{x})}))\\=&{{{{e}^{x}}^{x}}^{x}}^{x}ln({{{e}^{x}}^{x}}^{x}) + x{{{{e}^{x}}^{x}}^{x}}^{x}ln({{e}^{x}}^{x}) + x^{2}{{{{e}^{x}}^{x}}^{x}}^{x}ln({e}^{x}) + x^{3}{{{{e}^{x}}^{x}}^{x}}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return