There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(5350x + 665x)}{(3500 + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6015x}{(x + 3500)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6015x}{(x + 3500)}\right)}{dx}\\=&6015(\frac{-(1 + 0)}{(x + 3500)^{2}})x + \frac{6015}{(x + 3500)}\\=&\frac{-6015x}{(x + 3500)^{2}} + \frac{6015}{(x + 3500)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !