Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(2x + 1)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 16x^{4} + 32x^{3} + 24x^{2} + 8x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 16x^{4} + 32x^{3} + 24x^{2} + 8x + 1\right)}{dx}\\=&16*4x^{3} + 32*3x^{2} + 24*2x + 8 + 0\\=&64x^{3} + 96x^{2} + 48x + 8\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 64x^{3} + 96x^{2} + 48x + 8\right)}{dx}\\=&64*3x^{2} + 96*2x + 48 + 0\\=&192x^{2} + 192x + 48\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 192x^{2} + 192x + 48\right)}{dx}\\=&192*2x + 192 + 0\\=&384x + 192\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 384x + 192\right)}{dx}\\=&384 + 0\\=&384\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return