There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {3}^{tan(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{tan(x)}\right)}{dx}\\=&({3}^{tan(x)}((sec^{2}(x)(1))ln(3) + \frac{(tan(x))(0)}{(3)}))\\=&{3}^{tan(x)}ln(3)sec^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {3}^{tan(x)}ln(3)sec^{2}(x)\right)}{dx}\\=&({3}^{tan(x)}((sec^{2}(x)(1))ln(3) + \frac{(tan(x))(0)}{(3)}))ln(3)sec^{2}(x) + \frac{{3}^{tan(x)}*0sec^{2}(x)}{(3)} + {3}^{tan(x)}ln(3)*2sec^{2}(x)tan(x)\\=&{3}^{tan(x)}ln^{2}(3)sec^{4}(x) + 2 * {3}^{tan(x)}ln(3)tan(x)sec^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !