There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln((2{cosh(\frac{jT}{k})}^{N}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(2{cosh(\frac{jT}{k})}^{N})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(2{cosh(\frac{jT}{k})}^{N})\right)}{dx}\\=&\frac{2({cosh(\frac{jT}{k})}^{N}((0)ln(cosh(\frac{jT}{k})) + \frac{(N)(sinh(\frac{jT}{k})*0)}{(cosh(\frac{jT}{k}))}))}{(2{cosh(\frac{jT}{k})}^{N})}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !