There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{rcos(nt)}{t} + \frac{rsin(nt)}{t}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{rcos(nt)}{t} + \frac{rsin(nt)}{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{rcos(nt)}{t} + \frac{rsin(nt)}{t}\right)}{dt}\\=&\frac{r*-cos(nt)}{t^{2}} + \frac{r*-sin(nt)n}{t} + \frac{r*-sin(nt)}{t^{2}} + \frac{rcos(nt)n}{t}\\=&\frac{-rcos(nt)}{t^{2}} - \frac{rnsin(nt)}{t} - \frac{rsin(nt)}{t^{2}} + \frac{rncos(nt)}{t}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !