There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 11)(x - 15)(x + 4.58875)(x - 5.55284)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} - 5.55284x^{3} + 4.58875x^{3} - 25.48059455x^{2} - 15x^{3} + 83.2926x^{2} - 68.83125x^{2} + 382.20891825x + 11x^{3} - 61.08124x^{2} + 50.47625x^{2} - 280.28654005x - 165x^{2} + 916.2186x - 757.14375x + 4204.29810075\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} - 5.55284x^{3} + 4.58875x^{3} - 25.48059455x^{2} - 15x^{3} + 83.2926x^{2} - 68.83125x^{2} + 382.20891825x + 11x^{3} - 61.08124x^{2} + 50.47625x^{2} - 280.28654005x - 165x^{2} + 916.2186x - 757.14375x + 4204.29810075\right)}{dx}\\=&4x^{3} - 5.55284*3x^{2} + 4.58875*3x^{2} - 25.48059455*2x - 15*3x^{2} + 83.2926*2x - 68.83125*2x + 382.20891825 + 11*3x^{2} - 61.08124*2x + 50.47625*2x - 280.28654005 - 165*2x + 916.2186 - 757.14375 + 0\\=&4x^{3} - 16.65852x^{2} + 13.76625x^{2} - 50.9611891x - 45x^{2} + 166.5852x - 137.6625x + 33x^{2} - 122.16248x + 100.9525x - 330x + 260.9972282\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !