There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(x - 6)}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 6)^{\frac{2}{3}}\right)}{dx}\\=&((x - 6)^{\frac{2}{3}}((0)ln(x - 6) + \frac{(\frac{2}{3})(1 + 0)}{(x - 6)}))\\=&\frac{2(x - 6)^{\frac{2}{3}}}{3(x - 6)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2(x - 6)^{\frac{2}{3}}}{3(x - 6)}\right)}{dx}\\=&\frac{2(\frac{\frac{2}{3}(1 + 0)}{(x - 6)^{\frac{1}{3}}})}{3(x - 6)} + \frac{2(x - 6)^{\frac{2}{3}}(\frac{-(1 + 0)}{(x - 6)^{2}})}{3}\\=&\frac{-2}{9(x - 6)^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !