There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x - 6)}^{2}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{2} - 4x + 12\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{2} - 4x + 12\right)}{dx}\\=&\frac{1}{3}*2x - 4 + 0\\=&\frac{2x}{3} - 4\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{3} - 4\right)}{dx}\\=&\frac{2}{3} + 0\\=&\frac{2}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !