There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1 - {(1 + (\frac{-0.2479t}{403.8343}))}^{\frac{1}{0.2479}}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - (-0.0006138656375t + 1)^{\frac{4033884631}{1000000000}} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - (-0.0006138656375t + 1)^{\frac{4033884631}{1000000000}} + 1\right)}{dt}\\=& - (4.033884631(-0.0006138656375t + 1)^{\frac{3033884631}{1000000000}}(-0.0006138656375 + 0)) + 0\\=& - -0.0024762631605(-0.0006138656375t + 1)^{\frac{3033884631}{1000000000}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !