Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 120x(1 - {e}^{(\frac{-347}{10}(\frac{1}{x} - \frac{1}{150}))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 120x{e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})} + 120x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 120x{e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})} + 120x\right)}{dx}\\=& - 120{e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})} - 120x({e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})}((\frac{\frac{-347}{10}*-1}{x^{2}} + 0)ln(e) + \frac{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})(0)}{(e)})) + 120\\=& - 120{e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})} - \frac{4164{e}^{(\frac{\frac{-347}{10}}{x} + \frac{347}{1500})}}{x} + 120\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return