Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ csc(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( csc(x)\right)}{dx}\\=&-csc(x)cot(x)\\=&-cot(x)csc(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -cot(x)csc(x)\right)}{dx}\\=&--csc^{2}(x)csc(x) - cot(x)*-csc(x)cot(x)\\=&csc^{3}(x) + cot^{2}(x)csc(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( csc^{3}(x) + cot^{2}(x)csc(x)\right)}{dx}\\=&-3csc^{3}(x)cot(x) + -2cot(x)csc^{2}(x)csc(x) + cot^{2}(x)*-csc(x)cot(x)\\=& - 5cot(x)csc^{3}(x) - cot^{3}(x)csc(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 5cot(x)csc^{3}(x) - cot^{3}(x)csc(x)\right)}{dx}\\=& - 5*-csc^{2}(x)csc^{3}(x) - 5cot(x)*-3csc^{3}(x)cot(x) - -3cot^{2}(x)csc^{2}(x)csc(x) - cot^{3}(x)*-csc(x)cot(x)\\=&5csc^{5}(x) + 18cot^{2}(x)csc^{3}(x) + cot^{4}(x)csc(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return