There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{(({x}^{2} - 1)({x}^{2} + x + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x^{4} + x^{3} - x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x^{4} + x^{3} - x - 1)}\right)}{dx}\\=&(\frac{-(4x^{3} + 3x^{2} - 1 + 0)}{(x^{4} + x^{3} - x - 1)^{2}})\\=&\frac{-4x^{3}}{(x^{4} + x^{3} - x - 1)^{2}} - \frac{3x^{2}}{(x^{4} + x^{3} - x - 1)^{2}} + \frac{1}{(x^{4} + x^{3} - x - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !