There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-1}{({e}^{t})}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -{e}^{(-t)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -{e}^{(-t)}\right)}{dt}\\=&-({e}^{(-t)}((-1)ln(e) + \frac{(-t)(0)}{(e)}))\\=&{e}^{(-t)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !