There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (4 + x)(3 - \frac{1}{2}x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - \frac{1}{2}x^{2} + 12\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - \frac{1}{2}x^{2} + 12\right)}{dx}\\=&1 - \frac{1}{2}*2x + 0\\=& - x + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - x + 1\right)}{dx}\\=& - 1 + 0\\=& - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !