There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{x}(x + 1)}{(x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x{e}^{x}}{(x + 2)} + \frac{{e}^{x}}{(x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x{e}^{x}}{(x + 2)} + \frac{{e}^{x}}{(x + 2)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 2)^{2}})x{e}^{x} + \frac{{e}^{x}}{(x + 2)} + \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x + 2)} + (\frac{-(1 + 0)}{(x + 2)^{2}}){e}^{x} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x + 2)}\\=&\frac{-x{e}^{x}}{(x + 2)^{2}} + \frac{2{e}^{x}}{(x + 2)} - \frac{{e}^{x}}{(x + 2)^{2}} + \frac{x{e}^{x}}{(x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !