There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{(1 - \frac{x}{2})} - e^{1 - x})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(\frac{-1}{2}x + 1)}}{x} - \frac{e^{-x + 1}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(\frac{-1}{2}x + 1)}}{x} - \frac{e^{-x + 1}}{x}\right)}{dx}\\=&\frac{-{e}^{(\frac{-1}{2}x + 1)}}{x^{2}} + \frac{({e}^{(\frac{-1}{2}x + 1)}((\frac{-1}{2} + 0)ln(e) + \frac{(\frac{-1}{2}x + 1)(0)}{(e)}))}{x} - \frac{-e^{-x + 1}}{x^{2}} - \frac{e^{-x + 1}(-1 + 0)}{x}\\=&\frac{-{e}^{(\frac{-1}{2}x + 1)}}{x^{2}} - \frac{{e}^{(\frac{-1}{2}x + 1)}}{2x} + \frac{e^{-x + 1}}{x^{2}} + \frac{e^{-x + 1}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !