There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 8{x}^{3} + \frac{28{x}^{2}}{27} + \frac{98x}{729} + \frac{343}{19683}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8x^{3} + \frac{28}{27}x^{2} + \frac{98}{729}x + \frac{343}{19683}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8x^{3} + \frac{28}{27}x^{2} + \frac{98}{729}x + \frac{343}{19683}\right)}{dx}\\=&8*3x^{2} + \frac{28}{27}*2x + \frac{98}{729} + 0\\=&24x^{2} + \frac{56x}{27} + \frac{98}{729}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !