There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2}{(1 - {2}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{(-{2}^{x} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{(-{2}^{x} + 1)}\right)}{dx}\\=&2(\frac{-(-({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{(-{2}^{x} + 1)^{2}})\\=&\frac{2 * {2}^{x}ln(2)}{(-{2}^{x} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !