There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{A({2}^{x} - 1)}{x} + \frac{B}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{A{2}^{x}}{x} - \frac{A}{x} + \frac{B}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{A{2}^{x}}{x} - \frac{A}{x} + \frac{B}{x}\right)}{dx}\\=&\frac{A*-{2}^{x}}{x^{2}} + \frac{A({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x} - \frac{A*-1}{x^{2}} + \frac{B*-1}{x^{2}}\\=&\frac{A{2}^{x}ln(2)}{x} - \frac{A{2}^{x}}{x^{2}} + \frac{A}{x^{2}} - \frac{B}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !