Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{(a - x)}{(a + x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{a}{(a + x)} - \frac{x}{(a + x)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{a}{(a + x)} - \frac{x}{(a + x)})\right)}{dx}\\=&\frac{((\frac{-(0 + 1)}{(a + x)^{2}})a + 0 - (\frac{-(0 + 1)}{(a + x)^{2}})x - \frac{1}{(a + x)})*\frac{1}{2}}{(\frac{a}{(a + x)} - \frac{x}{(a + x)})^{\frac{1}{2}}}\\=&\frac{-a}{2(a + x)^{2}(\frac{a}{(a + x)} - \frac{x}{(a + x)})^{\frac{1}{2}}} + \frac{x}{2(a + x)^{2}(\frac{a}{(a + x)} - \frac{x}{(a + x)})^{\frac{1}{2}}} - \frac{1}{2(a + x)(\frac{a}{(a + x)} - \frac{x}{(a + x)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return