There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3{x}^{2} + 2)}{({x}^{2}({x}^{2} + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x^{2}}{(x^{4} + x^{2})} + \frac{2}{(x^{4} + x^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x^{2}}{(x^{4} + x^{2})} + \frac{2}{(x^{4} + x^{2})}\right)}{dx}\\=&3(\frac{-(4x^{3} + 2x)}{(x^{4} + x^{2})^{2}})x^{2} + \frac{3*2x}{(x^{4} + x^{2})} + 2(\frac{-(4x^{3} + 2x)}{(x^{4} + x^{2})^{2}})\\=&\frac{-12x^{5}}{(x^{4} + x^{2})^{2}} - \frac{14x^{3}}{(x^{4} + x^{2})^{2}} + \frac{6x}{(x^{4} + x^{2})} - \frac{4x}{(x^{4} + x^{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !