Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(\frac{(x + 6)}{(xsqrt(11))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(\frac{1}{sqrt(11)} + \frac{6}{xsqrt(11)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(\frac{1}{sqrt(11)} + \frac{6}{xsqrt(11)})\right)}{dx}\\=&(\frac{(\frac{-0*\frac{1}{2}*11^{\frac{1}{2}}}{(11)} + \frac{6*-1}{x^{2}sqrt(11)} + \frac{6*-0*\frac{1}{2}*11^{\frac{1}{2}}}{x(11)})}{(1 + (\frac{1}{sqrt(11)} + \frac{6}{xsqrt(11)})^{2})})\\=&\frac{-6}{(\frac{1}{sqrt(11)^{2}} + \frac{12}{xsqrt(11)^{2}} + \frac{36}{x^{2}sqrt(11)^{2}} + 1)x^{2}sqrt(11)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return