There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -arctan(\frac{(2x + 1)}{sqrt(11)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -arctan(\frac{2x}{sqrt(11)} + \frac{1}{sqrt(11)})\right)}{dx}\\=&-(\frac{(\frac{2}{sqrt(11)} + \frac{2x*-0*\frac{1}{2}*11^{\frac{1}{2}}}{(11)} + \frac{-0*\frac{1}{2}*11^{\frac{1}{2}}}{(11)})}{(1 + (\frac{2x}{sqrt(11)} + \frac{1}{sqrt(11)})^{2})})\\=&\frac{-2}{(\frac{4x^{2}}{sqrt(11)^{2}} + \frac{4x}{sqrt(11)^{2}} + \frac{1}{sqrt(11)^{2}} + 1)sqrt(11)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !