There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{x}{sqrt(xx - 2x + 2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{x}{sqrt(x^{2} - 2x + 2)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{x}{sqrt(x^{2} - 2x + 2)})\right)}{dx}\\=&(\frac{(\frac{1}{sqrt(x^{2} - 2x + 2)} + \frac{x*-(2x - 2 + 0)*\frac{1}{2}}{(x^{2} - 2x + 2)(x^{2} - 2x + 2)^{\frac{1}{2}}})}{((1 - (\frac{x}{sqrt(x^{2} - 2x + 2)})^{2})^{\frac{1}{2}})})\\=&\frac{1}{(\frac{-x^{2}}{sqrt(x^{2} - 2x + 2)^{2}} + 1)^{\frac{1}{2}}sqrt(x^{2} - 2x + 2)} - \frac{x^{2}}{(\frac{-x^{2}}{sqrt(x^{2} - 2x + 2)^{2}} + 1)^{\frac{1}{2}}(x^{2} - 2x + 2)^{\frac{3}{2}}} + \frac{x}{(\frac{-x^{2}}{sqrt(x^{2} - 2x + 2)^{2}} + 1)^{\frac{1}{2}}(x^{2} - 2x + 2)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !