There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(4 - {x}^{2})}{x}) + \frac{3x}{(sqrt(2 - {x}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x}{sqrt(-x^{2} + 2)} + \frac{4}{x} - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x}{sqrt(-x^{2} + 2)} + \frac{4}{x} - x\right)}{dx}\\=&\frac{3}{sqrt(-x^{2} + 2)} + \frac{3x*-(-2x + 0)*\frac{1}{2}}{(-x^{2} + 2)(-x^{2} + 2)^{\frac{1}{2}}} + \frac{4*-1}{x^{2}} - 1\\=&\frac{3}{sqrt(-x^{2} + 2)} + \frac{3x^{2}}{(-x^{2} + 2)^{\frac{3}{2}}} - \frac{4}{x^{2}} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !