Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sech(\frac{k(2x - t - i)}{(t - i)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sech(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sech(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})\right)}{dx}\\=&-sech(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})tanh(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})(2(\frac{-(0 + 0)}{(t - i)^{2}})kx + \frac{2k}{(t - i)} - (\frac{-(0 + 0)}{(t - i)^{2}})kt + 0 - (\frac{-(0 + 0)}{(t - i)^{2}})ki + 0)\\=&\frac{-2ktanh(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})sech(\frac{2kx}{(t - i)} - \frac{kt}{(t - i)} - \frac{ki}{(t - i)})}{(t - i)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return