There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sech(\frac{k(2t - x - x*2)}{(t - t*2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sech(\frac{3kx}{t} - 2k)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sech(\frac{3kx}{t} - 2k)\right)}{dx}\\=&-sech(\frac{3kx}{t} - 2k)tanh(\frac{3kx}{t} - 2k)(\frac{3k}{t} + 0)\\=&\frac{-3ktanh(\frac{3kx}{t} - 2k)sech(\frac{3kx}{t} - 2k)}{t}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !