There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{ln(x)}{e^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{e^{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{e^{x}}\right)}{dx}\\=&\frac{-e^{x}ln(x)}{e^{{x}*{2}}} + \frac{1}{e^{x}(x)}\\=&\frac{-ln(x)}{e^{x}} + \frac{1}{xe^{x}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-ln(x)}{e^{x}} + \frac{1}{xe^{x}}\right)}{dx}\\=&\frac{--e^{x}ln(x)}{e^{{x}*{2}}} - \frac{1}{e^{x}(x)} + \frac{-1}{x^{2}e^{x}} + \frac{-e^{x}}{xe^{{x}*{2}}}\\=&\frac{ln(x)}{e^{x}} - \frac{2}{xe^{x}} - \frac{1}{x^{2}e^{x}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !