There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x)(e + \frac{1}{(1 - x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xeln(x) + \frac{xln(x)}{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xeln(x) + \frac{xln(x)}{(-x + 1)}\right)}{dx}\\=&eln(x) + x*0ln(x) + \frac{xe}{(x)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}})xln(x) + \frac{ln(x)}{(-x + 1)} + \frac{x}{(-x + 1)(x)}\\=&eln(x) + e + \frac{xln(x)}{(-x + 1)^{2}} + \frac{ln(x)}{(-x + 1)} + \frac{1}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !