There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(47.75x - 15)}{(23.87xx + 47.7)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{47.75x}{(23.87x^{2} + 47.7)} - \frac{15}{(23.87x^{2} + 47.7)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{47.75x}{(23.87x^{2} + 47.7)} - \frac{15}{(23.87x^{2} + 47.7)}\right)}{dx}\\=&47.75(\frac{-(23.87*2x + 0)}{(23.87x^{2} + 47.7)^{2}})x + \frac{47.75}{(23.87x^{2} + 47.7)} - 15(\frac{-(23.87*2x + 0)}{(23.87x^{2} + 47.7)^{2}})\\=&\frac{-2279.585x^{2}}{(23.87x^{2} + 47.7)(23.87x^{2} + 47.7)} + \frac{716.1x}{(23.87x^{2} + 47.7)(23.87x^{2} + 47.7)} + \frac{47.75}{(23.87x^{2} + 47.7)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !