Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {2}^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{\frac{1}{x}}\right)}{dx}\\=&({2}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(2) + \frac{(\frac{1}{x})(0)}{(2)}))\\=&\frac{-{2}^{\frac{1}{x}}ln(2)}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{2}^{\frac{1}{x}}ln(2)}{x^{2}}\right)}{dx}\\=&\frac{--2 * {2}^{\frac{1}{x}}ln(2)}{x^{3}} - \frac{({2}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(2) + \frac{(\frac{1}{x})(0)}{(2)}))ln(2)}{x^{2}} - \frac{{2}^{\frac{1}{x}}*0}{x^{2}(2)}\\=&\frac{2 * {2}^{\frac{1}{x}}ln(2)}{x^{3}} + \frac{{2}^{\frac{1}{x}}ln^{2}(2)}{x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return