There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{((x - 4)(x + 1))}^{2}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{4} - 2x^{3} + \frac{1}{3}x^{2} + 8x + \frac{16}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{4} - 2x^{3} + \frac{1}{3}x^{2} + 8x + \frac{16}{3}\right)}{dx}\\=&\frac{1}{3}*4x^{3} - 2*3x^{2} + \frac{1}{3}*2x + 8 + 0\\=&\frac{4x^{3}}{3} - 6x^{2} + \frac{2x}{3} + 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !