There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 1){(\frac{2021}{2022})}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{\frac{2021}{2022}}^{x} + {\frac{2021}{2022}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{\frac{2021}{2022}}^{x} + {\frac{2021}{2022}}^{x}\right)}{dx}\\=&{\frac{2021}{2022}}^{x} + x({\frac{2021}{2022}}^{x}((1)ln(\frac{2021}{2022}) + \frac{(x)(0)}{(\frac{2021}{2022})})) + ({\frac{2021}{2022}}^{x}((1)ln(\frac{2021}{2022}) + \frac{(x)(0)}{(\frac{2021}{2022})}))\\=&{\frac{2021}{2022}}^{x}ln(\frac{2021}{2022}) + x{\frac{2021}{2022}}^{x}ln(\frac{2021}{2022}) + {\frac{2021}{2022}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !