Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ cos(x)ln(cos(x)) - sin(x)ln(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(cos(x))cos(x) - ln(sin(x))sin(x)\\\\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&\frac{25261sin^{2}(x)}{cos(x)} + \frac{106300sin^{4}(x)}{cos^{3}(x)} + \frac{182448sin^{6}(x)}{cos^{5}(x)} + \frac{140400sin^{8}(x)}{cos^{7}(x)} + \frac{40320sin^{10}(x)}{cos^{9}(x)} - \frac{40320cos^{10}(x)}{sin^{9}(x)} - \frac{140400cos^{8}(x)}{sin^{7}(x)} - \frac{182448cos^{6}(x)}{sin^{5}(x)} - \frac{106300cos^{4}(x)}{sin^{3}(x)} - \frac{25261cos^{2}(x)}{sin(x)} + 1319cos(x) - 1319sin(x) - ln(cos(x))cos(x) + ln(sin(x))sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return