There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({e}^{x} + 2x - cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e}^{x} + 2x - cos(x))\right)}{dx}\\=&\frac{(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2 - -sin(x))}{({e}^{x} + 2x - cos(x))}\\=&\frac{{e}^{x}}{({e}^{x} + 2x - cos(x))} + \frac{sin(x)}{({e}^{x} + 2x - cos(x))} + \frac{2}{({e}^{x} + 2x - cos(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !