There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(ln(x) + 2x)}{({x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x^{2}} + \frac{2}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x^{2}} + \frac{2}{x}\right)}{dx}\\=&\frac{-2ln(x)}{x^{3}} + \frac{1}{x^{2}(x)} + \frac{2*-1}{x^{2}}\\=&\frac{-2ln(x)}{x^{3}} + \frac{1}{x^{3}} - \frac{2}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2ln(x)}{x^{3}} + \frac{1}{x^{3}} - \frac{2}{x^{2}}\right)}{dx}\\=&\frac{-2*-3ln(x)}{x^{4}} - \frac{2}{x^{3}(x)} + \frac{-3}{x^{4}} - \frac{2*-2}{x^{3}}\\=&\frac{6ln(x)}{x^{4}} - \frac{5}{x^{4}} + \frac{4}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !