There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({4}^{x} + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {4}^{x} + 1\right)}{dx}\\=&({4}^{x}((1)ln(4) + \frac{(x)(0)}{(4)})) + 0\\=&{4}^{x}ln(4)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {4}^{x}ln(4)\right)}{dx}\\=&({4}^{x}((1)ln(4) + \frac{(x)(0)}{(4)}))ln(4) + \frac{{4}^{x}*0}{(4)}\\=&{4}^{x}ln^{2}(4)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {4}^{x}ln^{2}(4)\right)}{dx}\\=&({4}^{x}((1)ln(4) + \frac{(x)(0)}{(4)}))ln^{2}(4) + \frac{{4}^{x}*2ln(4)*0}{(4)}\\=&{4}^{x}ln^{3}(4)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {4}^{x}ln^{3}(4)\right)}{dx}\\=&({4}^{x}((1)ln(4) + \frac{(x)(0)}{(4)}))ln^{3}(4) + \frac{{4}^{x}*3ln^{2}(4)*0}{(4)}\\=&{4}^{x}ln^{4}(4)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !