There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 1){(ln(2))}^{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{ln(2)}^{(x - 1)} - {ln(2)}^{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{ln(2)}^{(x - 1)} - {ln(2)}^{(x - 1)}\right)}{dx}\\=&{ln(2)}^{(x - 1)} + x({ln(2)}^{(x - 1)}((1 + 0)ln(ln(2)) + \frac{(x - 1)(\frac{0}{(2)})}{(ln(2))})) - ({ln(2)}^{(x - 1)}((1 + 0)ln(ln(2)) + \frac{(x - 1)(\frac{0}{(2)})}{(ln(2))}))\\=& - {ln(2)}^{(x - 1)}ln(ln(2)) + x{ln(2)}^{(x - 1)}ln(ln(2)) + {ln(2)}^{(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !