There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sin(2)x + cos(x)) - 2x{\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(xsin(2) + cos(x)) - \frac{2}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(xsin(2) + cos(x)) - \frac{2}{x}\right)}{dx}\\=&\frac{(sin(2) + xcos(2)*0 + -sin(x))}{(xsin(2) + cos(x))} - \frac{2*-1}{x^{2}}\\=&\frac{sin(2)}{(xsin(2) + cos(x))} - \frac{sin(x)}{(xsin(2) + cos(x))} + \frac{2}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !