There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ x - sin(x){\frac{1}{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{sin(x)}{x^{3}} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{sin(x)}{x^{3}} + x\right)}{dx}\\=& - \frac{-3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\\=&\frac{3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\right)}{dx}\\=&\frac{3*-4sin(x)}{x^{5}} + \frac{3cos(x)}{x^{4}} - \frac{-3cos(x)}{x^{4}} - \frac{-sin(x)}{x^{3}} + 0\\=& - \frac{12sin(x)}{x^{5}} + \frac{6cos(x)}{x^{4}} + \frac{sin(x)}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - \frac{12sin(x)}{x^{5}} + \frac{6cos(x)}{x^{4}} + \frac{sin(x)}{x^{3}}\right)}{dx}\\=& - \frac{12*-5sin(x)}{x^{6}} - \frac{12cos(x)}{x^{5}} + \frac{6*-4cos(x)}{x^{5}} + \frac{6*-sin(x)}{x^{4}} + \frac{-3sin(x)}{x^{4}} + \frac{cos(x)}{x^{3}}\\=&\frac{60sin(x)}{x^{6}} - \frac{36cos(x)}{x^{5}} - \frac{9sin(x)}{x^{4}} + \frac{cos(x)}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !