There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{(\frac{(π - 1)(1 - sin(π)x)}{(π + 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}\right)}{dx}\\=&4({x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}((-(\frac{-(0 + 0)}{(π + 1)^{2}})πxsin(π) - \frac{πsin(π)}{(π + 1)} - \frac{πxcos(π)*0}{(π + 1)} + (\frac{-(0 + 0)}{(π + 1)^{2}})π + 0 + (\frac{-(0 + 0)}{(π + 1)^{2}})xsin(π) + \frac{sin(π)}{(π + 1)} + \frac{xcos(π)*0}{(π + 1)} - (\frac{-(0 + 0)}{(π + 1)^{2}}))ln(x) + \frac{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})(1)}{(x)}))\\=& - \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(x)sin(π)}{(π + 1)} + \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}ln(x)sin(π)}{(π + 1)} - \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)} + \frac{4π{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)x} + \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}sin(π)}{(π + 1)} - \frac{4{x}^{(\frac{-πxsin(π)}{(π + 1)} + \frac{π}{(π + 1)} + \frac{xsin(π)}{(π + 1)} - \frac{1}{(π + 1)})}}{(π + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !