There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sqrt(1 - {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-x^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-x^{2} + 1)\right)}{dx}\\=&\frac{(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-x}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2} - \frac{2x}{(-x^{2} + 1)^{\frac{3}{2}}} - (\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{-3x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&-3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{3} - \frac{3*3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - 3(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x - \frac{3}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{-15x^{4}}{(-x^{2} + 1)^{\frac{7}{2}}} - \frac{18x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3}{(-x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !