There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(2{x}^{2} + 1 - 2x) + sqrt(2{x}^{2} + 4 - 4x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(2x^{2} - 2x + 1) + sqrt(2x^{2} - 4x + 4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(2x^{2} - 2x + 1) + sqrt(2x^{2} - 4x + 4)\right)}{dx}\\=&\frac{(2*2x - 2 + 0)*\frac{1}{2}}{(2x^{2} - 2x + 1)^{\frac{1}{2}}} + \frac{(2*2x - 4 + 0)*\frac{1}{2}}{(2x^{2} - 4x + 4)^{\frac{1}{2}}}\\=&\frac{2x}{(2x^{2} - 2x + 1)^{\frac{1}{2}}} + \frac{2x}{(2x^{2} - 4x + 4)^{\frac{1}{2}}} - \frac{1}{(2x^{2} - 2x + 1)^{\frac{1}{2}}} - \frac{2}{(2x^{2} - 4x + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !