There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(2x)}(-1)sin(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -x{e}^{(2x)}sin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -x{e}^{(2x)}sin(2)\right)}{dx}\\=&-{e}^{(2x)}sin(2) - x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))sin(2) - x{e}^{(2x)}cos(2)*0\\=&-{e}^{(2x)}sin(2) - 2x{e}^{(2x)}sin(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !