There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}(0.15 - x)}{(0.1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{3}}{(-x + 0.1)} + \frac{0.15x^{2}}{(-x + 0.1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{3}}{(-x + 0.1)} + \frac{0.15x^{2}}{(-x + 0.1)}\right)}{dx}\\=& - (\frac{-(-1 + 0)}{(-x + 0.1)^{2}})x^{3} - \frac{3x^{2}}{(-x + 0.1)} + 0.15(\frac{-(-1 + 0)}{(-x + 0.1)^{2}})x^{2} + \frac{0.15*2x}{(-x + 0.1)}\\=& - \frac{x^{3}}{(-x + 0.1)(-x + 0.1)} - \frac{3x^{2}}{(-x + 0.1)} + \frac{0.15x^{2}}{(-x + 0.1)(-x + 0.1)} + \frac{0.3x}{(-x + 0.1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !