There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {3}^{x}ln(3) - (2a)ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{x}ln(3) - 2aln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{x}ln(3) - 2aln(x)\right)}{dx}\\=&({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln(3) + \frac{{3}^{x}*0}{(3)} - \frac{2a}{(x)}\\=&{3}^{x}ln^{2}(3) - \frac{2a}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !