There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ m{(x - m)}^{2}(x - n)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = mx^{3} - 2m^{2}x^{2} + m^{3}x - mnx^{2} + 2m^{2}nx - m^{3}n\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( mx^{3} - 2m^{2}x^{2} + m^{3}x - mnx^{2} + 2m^{2}nx - m^{3}n\right)}{dx}\\=&m*3x^{2} - 2m^{2}*2x + m^{3} - mn*2x + 2m^{2}n + 0\\=&3mx^{2} - 4m^{2}x - 2mnx + 2m^{2}n + m^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !